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Zigzag transition of finite dust clusters

André Melzer
Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany

�Received 22 February 2006; published 23 May 2006�

Experiments on the zigzag transition of finite dust clusters are presented. There, microspheres have been
confined in an anisotropic trap in the sheath of a radio-frequency discharge plasma. Transitions of the clusters
from a linear chain into a zigzag configuration are observed by increasing the particle number in the chain or
by variation of the anisotropy of the confinement. The equilibrium configurations of the finite clusters, as well
as the dynamical properties and the stability behavior near the transition have been investigated from a normal
mode analysis. Furthermore, the longitudinal and transverse dispersion of the normal modes in the one-
dimensional �1D� chain has been derived.
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I. INTRODUCTION

There is an enormous interest in the static and dynamic
behavior of Coulomb clusters. They consist of a finite num-
ber of charged particles in an external confinement. Such
Coulomb clusters are found, to name a few, as electrons or
ions in Paul or Penning traps �1�, ions in storage rings �2�,
electron droplets on liquid helium �3�, or polymer particles in
colloidal suspensions �4�.

In this respect, dusty plasmas provide an ideal and versa-
tile system to study finite charged-particle systems. Dusty
plasmas consist of solid particles immersed in a plasma en-
vironment. For the investigation of finite Coulomb clusters
usually plastic microspheres of 1–10 micrometer diameter
are trapped in a plasma discharge. Due to the collection of
plasma electrons and ions the microspheres attain high nega-
tive charges of the order of 104 elementary charges. Because
of this high particle charge the microspheres form strongly
coupled systems even at room temperature. Trapping in the
discharge can be achieved by a force balance of various
forces, like electric field force, gravity or thermophoresis �5�.
In contrast to ions in traps, the particles in a dusty plasma do
not interact by a pure Coulomb potential, but is shielded
Debye-Hückel or Yukawa potential of the form

��r� =
Ze

4��0r
exp�−

r

�D
� , �1�

where �D is the shielding length and Z is the particle charge.
Nevertheless, to express the electrostatic nature of these sys-
tems, they are usually also referred to as “Coulomb clusters,”
although “Yukawa cluster” might be more appropriate.

Finite Coulomb �Yukawa� clusters in dusty plasmas have
been investigated experimentally in various configurations.
Clusters have been studied in two dimensions �2D� with iso-
tropic confinement �6–9� in view of structure, rotational sta-
bility and normal modes. Linear �one-dimensional �1D�� sys-
tems have been explored by wave excitation and propagation
�10� and their phonon spectrum has been analyzed in great
detail see, e.g., Ref. �11�. Recently, isotropic three-
dimensional �3D� clusters �so-called Coulomb balls� have
been generated in the laboratory �12,13�. There, the onion-

like shell structure and the properties of the confinement
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have been identified and measured �12,14�. However, transi-
tion between the various configurations have not been inves-
tigated so far.

Hence, in this paper, we present experiments on the tran-
sition from the strictly one-dimensional linear chain of par-
ticles to 2D structures in an anisotropic confinement. From
simulations �15� it is known that a transition from a strict 1D
to a 2D structure occurs via a zigzag transition at a critical
value of the anisotropy. There the particles in the center of
the chain, where the interparticle distance is smallest, are
elongated from their chain position alternately in perpendicu-
lar �transverse� direction forming a zigzag pattern. Here, ex-
periments on the zigzag transition by variation of the number
of particles in a chain and by changing the anisotropy of the
confinement will be presented. Their static and dynamic
properties near the transition are described.

II. EXPERIMENTAL METHODS AND MODEL

The experiments have been performed in a parallel plate
rf discharge �13.56 MHz at 5 W� in Argon at gas pressures
between 2 and 10 Pa. Plastic microspheres �melamine form-
aldehyde� of 10.2 micron diameter �and a mass of m=8.41
�10−13 kg� are dropped into the discharge. A rectangular
barrier of 6 mm height and 5�40 mm2 inner dimension is
placed onto the lower electrode �see Fig. 1�a��. The particles
are trapped above the groove of the barrier by a force bal-
ance of electric field force and gravity. The barrier provides
an anisotropic confinement for the particles in the horizontal
plane. The particles are illuminated by a laser diode and the
scattered light is recorded by a video camera at a frame rate
of 50 fps with megapixel resolution.

The dust cluster is trapped in the potential well provided
by the barrier on the electrode. The barrier distorts the elec-
trostatic equipotential lines in the plasma sheath above the
electrode and thus forms an anisotropic confinement since
the size of the barrier in the y-direction is much larger than in
the x-direction �Fig. 1�. Consequently, the 3D potential well
is cigar-shaped of the form

V�x,y,z� =
1

2
m��x

2x2 + �y
2y2 + �z

2z2�

where x ,y are Cartesian coordinates in the horizontal plane

and z denotes the vertical direction. The vertical confinement
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is due to gravity and electric field force and is much stronger
than the horizontal confinement �16� with high vertical reso-
nance frequency �z��x ,�y. Consequently, the motion of
the microspheres is restricted to the x and y direction, only.
Hence, the vertical direction will be ignored in the following
discussions.

The total energy of N dust particles confined in the aniso-
tropic horizontal confinement is then given by �17�

E =
1

2
m�0

2�
i=1

N

�xi
2 + 	yi

2� +
Z2e2

4��0
�
i
j

N
exp�− rij/�D�

rij
. �2�

The first term is the potential energy in the confining well of
the barrier, the second is the �screened� Coulomb energy be-
tween the particles. Here, we have chosen �0=�x and 	
=�y

2 /�x
2 is the parameter of anisotropy. Due to the shape of

the barrier �y ��x and thus 	�1. Isotropic 2D confinement
corresponds to 	=1. With 	�1 the confinement is aniso-
tropic towards a 1D shape.

As mentioned above, the �screened� Coulomb interaction
energy is characterized by the particle charge Z and the De-
bye screening length �D. Finally, xi , yi are the x ,y position of
particle i relative to the center of the confinement, respec-
tively, and rij = ��xi−xj�2+ �yi−yj�2�1/2 is the interparticle dis-
tance between particles i and j.

Using the normalization

r0 = � Z2e2

4��0

2

m�0
2	1/3

and E0 = �m�0
2

2
� Z2e2

4��0
�2	1/3

�3�

the total energy can be simply written as

E = �
i=1

N

�xi
2 + 	yi

2� + �
i
j

N
exp�− rij�

rij
, �4�

where =r0 /�D is the screening strength. One should note
that the length scale r0 is of the order of the interparticle
distance.

When the confinement in x-direction is by far stronger
than that in y �i.e., 	�1� the particles will arrange in a single
linear chain �see Fig. 2�. Diminishing the confinement
strength �x �thus increasing 	�, the linear chain makes a
transition into a zigzag arrangement at a critical anisotropy

parameter 	c �15�. This critical parameter also depends on
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the number of trapped particles N. From a fit to numerical
simulations, this critical parameter is found to scale as �17�

	c = 3.23N−1.82 �5�

by Candido et al. �CRSP� for pure Coulomb interaction
�=0�. Dubin and O’Neil �DN� have calculated the critical
anisotropy parameter from the local density approximation
as �1�

	c =
ln�6N� + � − 13/5

0.591N2 . �6�

Here, �=0.577 is Euler’s constant. The DN expression for
the critical 	c is reliable for large N, N
10 say.

III. EXPERIMENTAL RESULTS

A. Static properties

In our experiments, the zigzag transition of the dust clus-
ter is investigated by either variation of particle number N or
by changing the anisotropy parameter 	. Here, we start with
the description of the variation of particle number. The ex-
periments have been performed at fixed discharge param-
eters: The gas pressure was 3.9 Pa at a plasma power of
5 W.

Then, N particles have been dropped into the confinement
of the barrier. All clusters between N=4 and N=15 plus N
=18 have been realized and recorded. For N�9, the particles

FIG. 1. �a� Scheme of the experimental setup.
�b� Cross section through the barrier: Illustration
of the equipotential lines and cluster height above
the confining barrier.

FIG. 2. Snapshots of the dust cluster for N=4, 9, 10, and 18.
The zigzag transition is observed for N=10 particles. The size of

2
each image corresponds to 2.8�9.1 mm .
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arrange in a strict 1D linear chain �see Fig. 2�. At N=10, the
transition into a zigzag pattern occurs. At N=10 only the
central 3 particles show a perpendicular �transverse� elonga-
tion. With increased particle number �N=18�, more and more
particles are involved in the zigzag pattern. The general ap-
pearance of the clusters is very similar to the simulations
�15�.

This zigzag transition is easily understood: By adding
more particles into the chain, the particles in the center of the
confinement are more strongly compressed by the outer par-
ticles due to the confining potential �y. If the force on the
central particles exceeds a certain threshold the particles de-
viate into the transverse direction. Then, the transverse con-
fining force due to the potential �x is smaller than the com-
pression of the N particles in the confinement �y and the
�screened� Coulomb repulsion among the particles.

In our second experiment, the anisotropy of the confine-
ment was changed. This was achieved by a variation of the
gas pressure in the discharge between 4 and 8 Pa. At low gas
pressure �4 Pa� the cluster is trapped relatively far above the
barrier since the plasma sheath width is large at low gas
pressure. At that height, the equipotential lines are only
weakly bent by the barrier. This corresponds to a weak con-
finement �x �and thus to a relatively high 	=�y /�x�. In con-
trast, at higher gas pressure, the sheath width decreases, the
cluster is confined closer to the electrode and, thus, closer to
the barrier where the equipotential lines provide a deep
trough with strong confinement �x �and small 	�. This be-
havior is illustrated in Fig. 1�b�. Since the barrier is much
more extended in the y-direction the influence of trapping
height on �y is not as large as on �x.

Figure 3 shows the cluster configurations for different gas
pressures. As expected, for low gas pressures p�7.5 Pa the
cluster exhibits a zigzag pattern due to the weak confinement
�x. Only at p=7.5 Pa a strict 1D linear chain is observed.
This transition can be induced reversibly with gas pressure
without noticeable hysteresis. At 6.8 Pa only the innermost 3
to 4 particles show the zigzag pattern, whereas at 4.0 Pa the
largest part of the cluster is in zigzag configuration with
much larger perpendicular elongation. This reflects the
weaker confinement �and higher 	� at lower gas pressure.
The behavior is thus comparable to that with particle number
variation.

FIG. 3. Snapshots of the dust cluster with N=13 for p=4.0, 6.0,
6.8, and 7.5 Pa. The zigzag configuration is observed for p
�7.5 Pa. The size of each image corresponds to 2.8�9.1 mm2.
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A change of plasma power should also have an effect on
the strength of the confining potential because of the change
of the electron and ion density in the sheath. While some
effect has been observed a clear transition between 1D and
zigzag has not been found in the investigated parameter
range.

B. Comparison to the model

For a detailed comparison of the experiment with the
model the anisotropy parameter 	 has to be determined from
the experiment. This has been done for the configurations
that show a zigzag pattern, i.e., for N�10 at 3.9 Pa and for
p�6.8 Pa at N=13. From the strict 1D chain that parameter
has not been derived.

To determine 	, we assume that the observed configura-
tion is in equilibrium which means that for each particle the
net force �due to �screened� Coulomb repulsion from the
other particles and due to the confinement� is zero. We have
calculated the force Fx,y

i on the ith particle in x and
y-direction by

Fx
i = −

�E

�xi
and Fy

i = −
�E

�yi

where the energy in the form

E/E0 = �
i=1

N
1

r0
2 �xi

2 + 	yi
2� + �

i
j

N
r0

rij
exp�− rij� ,

is used. The forces were obtained using the measured coor-
dinates xi and yi of the cluster with a chosen value of 
=0, . . . ,4. The energy includes the scaling parameter r0
which is a priori undetermined due to the unknown values of
the particle charge Z and the confining potential �0

2. The
parameter E0 can be ignored here because the absolute value
of the energy and the force is not required.

Now, in a first step the length scaling r0 is found from the
condition that the forces Fx

i on all particles in x-direction
should vanish. The forces Fx

i are used in this first step since
they do not contain the second unknown 	. Numerically, r0
is derived as the value that minimizes �i

N
Fx
i 
. Depending on

, r0 lies in the range between 370 and 900 �m which is of
the order of the interparticle distance.

Having now determined r0, the anisotropy parameter 	 is
found in a similar manner using the forces in y-direction. It is
found from the minimum of �i

N
Fy
i 
 using the previously de-

rived value of r0. The obtained values of r0 and 	 are com-
piled in Tables I and II.

In the experiment with variation of particle number the
obtained values of r0 and 	 are found to be independent of N
�within statistical limits� as one would expect. Hence, Table I
gives the mean values and the root-mean-square deviation of
these parameters. These values are also used in the subse-
quent analysis of the strict 1D chains with N�9. Of course,
the values depend on the chosen screening strength  since
that determines the electrostatic forces between the particles
and, consequently, the necessary strength of the confinement.

In the experiment with variation of gas pressure �Table

II�, the anisotropy parameter 	 is found to decrease continu-
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ously, indicating a stronger transverse confinement. This ex-
actly reflects the observations from the experiment.

The obtained anisotropy parameters are compared to the
model predictions of CRSP �17� and DN �1� in Fig. 4. Using
the experimental values of 	 from the particle number ex-
periment and noting that the zigzag transition in this experi-
ment occurs between 9 and 10 particles, full agreement is
obtained with the model of CRSP with a chosen value of 
=0. As in the experiment, CRSP predicts the transition pre-
cisely between 9 and 10 particles. The model of DN is in
agreement for �0.5. According to the DN model the zig-
zag transition would occur between 7 and 8 particles using
the 	-value at =0, between 9 and 10 particles at =0.5, and
between 11 and 12 particles at =1.

The pressure variation experiment with N=13 yields a
critical anisotropy parameter that is again very close to the
model of CRSP at =0. The experiment is again close to the
model of DN when  is chosen near 0.5.

Summarizing, very close quantitative agreement between
the experiment and the models is found in the range of
screening strengths from =0 to 1. Very similar values of the
screening strength have been obtained in previous experi-
ments on 1D and 2D clusters �8,11�. Thus, the static proper-
ties are thus very well described by the models.

C. Dynamical properties and stability

We will now discuss the dynamical behavior and the sta-
bility of the dust clusters near the zigzag transition.

The dynamical properties and the stability of dust clusters
are usually analyzed in terms of the normal modes of the
system. This technique has been used to determine the mode
spectrum of extended 2D crystals �18�, isotropic 2D dust
clusters �8�, or long 1D chains �11�. The application of this
method to finite dust clusters is described in detail in Ref. �8�
and will only be briefly summarized here.

First, the normal modes of a finite cluster are the eigen-
values and eigenvectors of the dynamical matrix �19�

TABLE I. Scaling parameter r0 and anisotropy p
with N�10. The given quantities are the mean valu

=0 =1

r0 /�m 505±10 581±10

	 /10−2 5.3±0.5 2.8±0.3

TABLE II. Scaling parameter r0 and anisotropy p
with N=13 at different gas pressures for a chosen v

=0 p=4.0 Pa p=4

r0 /�m 490 4

	 /10−2 5.7 4

=1 p=4.0 Pa p=4

r0 /�m 561 4

	 /10−2 2.9 2
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E�,��,ij =
�2E

�r�,i�r��,j
,

where r�,i denotes the x or y coordinate of the ith particle
�� ,��=x or y�. The eigenvectors of the dynamical matrix
describe the mode oscillation patterns of the cluster and the
eigenvalues are the oscillation frequencies of the respective
modes. Experimentally, the normal mode spectra are ob-
tained as the spectral power density of mode number �
=1, . . . ,2N by

S���� =
2

T�0

T

v��t�ei�t�2

.

Here, v��t�=�i=1
N vi�t� ·ei,� are the thermal particle fluctuations

�with velocities vi� around their equilibrium positions pro-
jected onto the normal mode oscillation vectors ei,� of mode
�.

The stability of the cluster is determined by the mode with
the lowest eigenfrequency. It is thus very intriguing to study
the lowest-frequency modes near the zigzag transition.

Starting with the experiment of anisotropy variation
�by pressure variation� the frequency and oscillation patterns
of the two lowest eigenmodes are shown in Fig. 5. �Actually,
the lowest-frequency mode usually is the center-of-mass
mode in y-direction at a frequency of �y =�	�0. Since this
mode only reflects the external confinement and does not
involve any relative particle motions it is irrelevant for the
stability and is thus ignored.� At low pressure �and large
parameter 	� the lowest mode exhibits a preferred motion
along the y-direction. The motion in x perpendicular to the
chain is small. At higher pressure near the transition into the
strict 1D chain a mode with decisive transverse activity takes
over the role of the lowest frequency mode. These two
modes are close in frequency and small in absolute value.
The two mode patterns exactly reflect the competition be-

eter 	 determined from the observed configurations
nd root-mean-square deviations.

=2 =3 =4

685±9 775±18 877±23

2.3±0.3 2.0±0.5 2.0±0.6

eter 	 determined from the observed configurations
of =0 and =1.

a p=6.0 Pa p=6.8 Pa

390 370

3.7 3.3

a p=6.0 Pa p=6.8 Pa

448 420

2.0 1.8
aram
es a
aram
alue

.9 P

30

.4

.9 P

92

.3
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tween the linear chain and zigzag configuration. Interest-
ingly, this is still observable in the established zigzag con-
figuration.

In turn, after the transition into the strict 1D chain
�at 7.5 Pa� the lowest mode is one with pure transverse mo-
tion �in this case, the frequency of this mode is found to be

FIG. 4. Critical anisotropy parameter 	 as a function of particle
number. The horizontal gray bars are the values of 	 determined
from the experiment with particle number variation for different 
�compare Table I�. The height of the bars indicate the rms errors of
the experiment. The vertical gray bar indicates the region from N
=9 to 10, where the zigzag transition occurs. The circles denote the
	-values for N=13 of the experiment with gas pressure variation.
The critical 	 is taken at the highest pressure where the zigzag
pattern still is observed, i.e., at p=6.8 Pa. The solid and dashed line
show the critical 	 from the models of Dubin and O’Neil �1� and
Candido et al. �17�, respectively.

FIG. 5. Frequency of the lowest eigenmodes during pressure
variation. The oscillation pattern of the corresponding eigenmodes
is indicated in the insets. Below 7.5 Pa the cluster is in the zigzag

state, above that pressure it forms a 1D chain.
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actually even smaller than that of the center-of-mass mode�.
The mode pattern obviously precisely reflects the tendency
to form a zigzag pattern which is still visible in the linear
chain configuration. The fact that this mode has such a low
frequency shows that the 1D chain is very close to the zigzag
transition. Thus, the dynamics directly reflect the static be-
havior of the cluster and contain information on the “other”
side of the transition point.

This lowest-frequency transverse mode in the 1D chain
will now be investigated for the linear chains with different
particle number. This mode appears in the normal mode
spectrum for each particle number that forms a strict 1D
chain. Figure 6 shows the spectral power density of this
transverse mode for the observed chains with particle num-
bers N=4 to 9. The maximum of the spectral power density
is found at quite low frequencies below 3 Hz. It is easily
seen that the maximum of the power density decreases with
particle number, i.e., when approaching the zigzag transition
at N=10. This substantiates the fact that this transverse mode
is responsible for the stability of the cluster against the zig-
zag transition.

D. 1D modes

Finally, we like to investigate the normal modes of strict
1D linear chain configurations in longitudinal and transverse
polarization. The 2N normal modes of a linear chain can be
exactly divided into either motion purely along the linear
chain �N longitudinal modes� or purely perpendicular to the
chain �N transverse modes�. For each longitudinal �trans-
verse� mode, we have calculated the corresponding wave
vector k. Here, the spatial Fourier components of the eigen-
vectors el

j �et
j� of the longitudinal �transverse� modes along

the chain are calculated from the relation

Sl,t�k� = �
j=1

N

el,t
j eikyj .

For example, the lowest frequency transverse mode with the

FIG. 6. Gray-scale plot of the spectral power density of the
lowest perpendicular mode as a function of particle number in the
cluster.
alternating motion in Fig. 5 �at 7.5 Pa� would give a maxi-
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mum St�k� at k=� /a where a=493 �m is the interparticle
distance.

From this, the dispersion relation of the longitudinal and
transverse mode of a linear chain are derived: The spectral
power density of each mode is plotted versus the wave vec-
tor ka as determined above. The dispersion relations are
shown in Fig. 7 where the N=13 chain at p=7.5 Pa from the
experiment with anisotropy variation has been analyzed. The
longitudinal mode increases from small values to a maxi-
mum at ka=�. For long wavelengths k→0 the longitudinal
mode goes to the very low-frequent center-of-mass mode in
y-direction at the frequency �y =�	�0. The maximum at
ka=� is close to the dust plasma frequency �pd �see below�.

In contrast, the transverse mode is an optical backward
wave: The long wavelength limit is at �0=�x and describes
the center-of-mass mode in x-direction. The mode frequen-

FIG. 7. Gray-scale plot of the spectral power density as a func-
tion of wave vector ka for the longitudinal �upper panel� and trans-
verse �lower panel� modes. The solid line indicates the dispersion
relation of the longitudinal and transverse wave in a linear chain
according to Eq. �7� for =0. The high spectral activity at a fre-
quency of 8 Hz in the transverse modes, as indicated by the arrow,
is due to unwanted oscillations of the camera holder.
cies decrease for larger k. This corresponds to the fact that
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the lowest-frequency mode in Fig. 5 is one with alternating
directions �corresponding to a wave vector of ka=��.

Similar dispersions of longitudinal waves have been stud-
ied experimentally and theoretically, e.g., by Refs.
�10,11,20�. Also, the backward dispersion of transverse
waves has been studied previously �11,21�. The observed
longitudinal and transverse modes in this experiment are
similar to investigations of Liu and Goree �11� who have
studied the �driven and natural� phonon spectrum of 1D
chains. The difference in our approach is that we have de-
rived the dispersion from the determination of the normal
modes whereas Liu and Goree have found the dispersion for
any k directly from the particle motions without calculating
of the normal modes. A similar attempt of deriving the dis-
persion from the normal modes has been followed for isotro-
pic 2D clusters �22� where, however, the determination of the
wave vectors from the mode patterns is more problematic.

Our measured dispersion is compared with the natural
phonon spectrum

C��,k� =
����
m2

�l,t
2 �k�

��2 − �l,t
2 �k��2 + �2�2 �7�

as given by Liu and Goree �11�. Here, � is the Epstein coef-
ficient from friction with the neutral gas ���7 s−1 for our
conditions� and �l,t

2 �k� are the frequencies of the longitudinal
and transverse mode at a wave vector k. These frequencies
are given by �10,11,21,23�

�l
2�k� = 	�0

2 + wpd
2 �

j=1

M
e−j

j3 �2 + 2j + j22�sin2� jka

2
�

�t
2�k� = �0

2 + wpd
2 �

j=1

M
e−j

j3 �1 + j�sin2� jka

2
� ,

where the dust plasma frequency

�pd
2 =

Z2e2

��0ma3

defines the interaction strength. The parameter ���� is the
spectral power density of a random force that mimics the
excitation of natural phonons.

The natural phonon spectrum according to Eq. �7� con-
tains the unknown quantities �0 and �pd which are deter-
mined by fitting the natural phonon model to the experimen-
tal power spectrum. A quite good agreement between the
experimental normal mode dispersion and the natural
phonons is obtained for =0. Thus, the normal mode analy-
sis allows to retrieve the dispersion relation, again with a
consistent value for . From the fit, the dust plasma fre-
quency and the confinement are determined. The confine-
ment frequency is obtained as �0 / �2��=6.5 Hz and the dust
plasma frequency is found as �pd=2.2�0.

From the fit value of the dust plasma frequency a dust
charge of Z=11 300 is derived. Instead of using the plasma
frequency as a parameter describing the dynamics of the sys-
tem the dust charge can also be determined from the static
scale length r0 �see Eq. �3�� from which a dust charge of Z

=11 100 is obtained. This is precisely in the range of charge
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values as obtained in previous experiments on finite dust
clusters under similar conditions �8�.

IV. SUMMARY

To summarize, the zigzag transition of finite dust clusters
has been analyzed experimentally. The zigzag transition has
been driven by the increase of particle number or by the
change of the anisotropy of the confinement by gas pressure
variation. The observed transition points in particle number
and anisotropy parameter are in very good agreement with
simulation data for screening strengths between =0 and 1.

The dynamic stability of the system near the zigzag tran-
sition was analyzed and revealed that in the zigzag configu-
ration the most unstable modes describe the competition be-
tween linear chain and zigzag configuration. In the strict 1D
chain the lowest-frequency mode is a pure transverse mode
with alternating motion. It precisely reflects the way the zig-
zag transitions develop. The modes thus contain the informa-
tion of both sides of the transition.
165004 �2004�.
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The alternating transverse mode is found in all 1D chains.
The mode frequency becomes smaller �and thus closer to the
instability� when the particle number in the chain is in-
creased and drops to zero at the zigzag transition which con-
firms the role of this mode during the transition.

Finally, the dispersion relation of the longitudinal and
transverse modes in these linear chains has been derived
from the normal mode spectra and is found to be in good
agreement with the natural phonon spectrum in chains �11�.
The dust charge obtained from the normal modes supports
those obtained in isotropic 2D clusters �8�.

The investigation of such transitions in the dimensionality
of the clusters will allow much more sensitive measurements
of the static and dynamic properties of Coulomb �Yukawa�
clusters.
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